Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
JAMA Intern Med ; 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2244638

ABSTRACT

This quality improvement study analyzes the rate of failures in entrance screening for COVID-19 among individuals entering a large academic medical center.

2.
Cell reports Medicine ; 2023.
Article in English | EuropePMC | ID: covidwho-2228680

ABSTRACT

The chronic infection hypothesis for novel SARS-CoV-2 variant emergence is increasingly gaining credence following the appearance of Omicron. Here we investigate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection lasting for 471 days (and still ongoing) with consistently recovered infectious virus and high viral genome copies. During the infection, we find an accelerated virus evolutionary rate translating to 35 nucleotide substitutions per year, approximately two-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution result in the emergence and persistence of at least three genetically distinct genotypes suggesting the establishment of spatially structured viral populations continually reseeding different genotypes into the nasopharynx. Finally, we track the temporal dynamics of genetic diversity to identify advantageous mutations and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic infections accelerate SARS-CoV-2 evolution, providing an opportunity for the emergence of genetically divergent variants. Graphical To understand the intrahost evolution of SARS-CoV-2 from a single patient chronically infected for at least 471 days, Chaguza et al. use whole genome sequencing to estimate the evolutionary rate, the genetic divergence of viral lineages, relative mutation rates, and frequency of mutational variants during the course of the infection.

3.
Cell Rep Med ; 4(2): 100943, 2023 02 21.
Article in English | MEDLINE | ID: covidwho-2211656

ABSTRACT

The chronic infection hypothesis for novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant emergence is increasingly gaining credence following the appearance of Omicron. Here, we investigate intrahost evolution and genetic diversity of lineage B.1.517 during a SARS-CoV-2 chronic infection lasting for 471 days (and still ongoing) with consistently recovered infectious virus and high viral genome copies. During the infection, we find an accelerated virus evolutionary rate translating to 35 nucleotide substitutions per year, approximately 2-fold higher than the global SARS-CoV-2 evolutionary rate. This intrahost evolution results in the emergence and persistence of at least three genetically distinct genotypes, suggesting the establishment of spatially structured viral populations continually reseeding different genotypes into the nasopharynx. Finally, we track the temporal dynamics of genetic diversity to identify advantageous mutations and highlight hallmark changes for chronic infection. Our findings demonstrate that untreated chronic infections accelerate SARS-CoV-2 evolution, providing an opportunity for the emergence of genetically divergent variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Persistent Infection , Genome, Viral , Genotype
6.
Transpl Infect Dis ; 24(2): e13782, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1583252

ABSTRACT

BACKGROUND: Solid organ transplant recipients are at increased risk of COVID-19-associated morbidity and mortality. AIMS: We describe a nosocomial outbreak investigation on an immunocompromised inpatient unit. METHODS: Patients positive for SARS-CoV-2 were identified. An epidemiologic investigation was assisted with whole genome sequencing of positive samples. RESULTS: Two patients were identified as potential index cases; one presented with diarrhea and was initially not isolated, and the other developed hypoxemia on hospital day 18 before testing positive. Following identification of a SARS-CoV-2 cluster, the unit was closed and all patients and staff received surveillance testing revealing eight additional positive patients and staff members. Whole genome sequencing confirmed an outbreak. Enhanced infection prevention practices mitigated further spread. Asymptomatic patients with COVID-19 were successfully treated with bamlanivimab. DISCUSSION: Preventing SARS-CoV-2 outbreaks in transplant units poses unique challenges as patients may have atypical presentations of COVID-19. Immunocompromised patients who test positive for SARS-CoV-2 while asymptomatic may benefit from monoclonal antibody therapy to prevent disease progression. All hospital staff members working with immunocompromised patients should be promptly encouraged to follow infection prevention behaviors and receive SARS-CoV-2 vaccination. CONCLUSION: SARS-CoV-2 outbreaks on immunocompromised units can be mitigated through prompt identification of cases and robust infection prevention practices.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Disease Outbreaks , Humans , Vaccination
8.
Infect Control Hosp Epidemiol ; 42(5): 625-626, 2021 05.
Article in English | MEDLINE | ID: covidwho-1233675

ABSTRACT

Mass asymptomatic SARS-CoV-2 nucleic acid amplified testing of healthcare personnel (HCP) was performed at a large tertiary health system. A low period-prevalence of positive HCP was observed. Of those who tested positive, half had mild symptoms in retrospect. HCP with even mild symptoms should be isolated and tested.


Subject(s)
Asymptomatic Infections/epidemiology , COVID-19 Testing/statistics & numerical data , COVID-19/epidemiology , Health Personnel/statistics & numerical data , COVID-19/diagnosis , COVID-19/transmission , Connecticut/epidemiology , Humans , SARS-CoV-2/isolation & purification
9.
Psychiatry Res ; 298: 113776, 2021 04.
Article in English | MEDLINE | ID: covidwho-1062564

ABSTRACT

Inpatient psychiatric facilities can face significant challenges in containing infectious outbreaks during the COVID-19 pandemic. The main objective of this study was to characterize the epidemiology, testing data, and containment protocols of COVID-19 in a large academic medical center during the height of the COVID-19 outbreak. A retrospective cohort analysis was conducted on hospitalized individuals on five inpatient psychiatric units from March 1st to July 8th, 2020. Demographic data collected include age, race, gender, ethnicity, diagnosis, and admission status (one or multiple admissions). In addition, a Gantt chart was used to assess outbreak data and timelines for one unit. Testing data was collected for patients admitted to inpatient psychiatric units, emergency room visits, and employees. 964 individuals were hospitalized psychiatrically. The study population included ethnically diverse patients with various mental illnesses. We also describe infection prevention strategies, screening, and triage protocols utilized to safely continue patient flow during and beyond the study period with a low patient and employee infection rate. In summary, our study suggests that early implementation of triage, screening, extensive testing, and unit-specific interventions can help prevent and contain the spread of COVID-19 in inpatient psychiatric units and help facilitate safe delivery of care during a pandemic.


Subject(s)
Academic Medical Centers , COVID-19 , Mental Disorders , Psychiatric Department, Hospital , Triage , Academic Medical Centers/standards , Academic Medical Centers/statistics & numerical data , Adult , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , Female , Humans , Inpatients , Male , Mental Disorders/epidemiology , Mental Disorders/therapy , Middle Aged , Psychiatric Department, Hospital/standards , Psychiatric Department, Hospital/statistics & numerical data , Retrospective Studies , Triage/standards , Triage/statistics & numerical data
10.
EBioMedicine ; 62: 103112, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1023543

ABSTRACT

BACKGROUND: The rapid spread of SARS-CoV-2, the causative agent of Coronavirus disease 2019 (COVID-19), has been accompanied by the emergence of distinct viral clades, though their clinical significance remains unclear. Here, we aimed to investigate the phylogenetic characteristics of SARS-CoV-2 infections in Chicago, Illinois, and assess their relationship to clinical parameters. METHODS: We performed whole-genome sequencing of SARS-CoV-2 isolates collected from COVID-19 patients in Chicago in mid-March, 2020. Using these and other publicly available sequences, we performed phylogenetic, phylogeographic, and phylodynamic analyses. Patient data was assessed for correlations between demographic or clinical characteristics and virologic features. FINDINGS: The 88 SARS-CoV-2 genome sequences in our study separated into three distinct phylogenetic clades. Clades 1 and 3 were most closely related to viral sequences from New York and Washington state, respectively, with relatively broad distributions across the US. Clade 2 was primarily found in the Chicago area with limited distribution elsewhere. At the time of diagnosis, patients infected with Clade 1 viruses had significantly higher average viral loads in their upper airways relative to patients infected with Clade 2 viruses, independent of disease severity. INTERPRETATION: These results show that multiple variants of SARS-CoV-2 were circulating in the Chicago area in mid-March 2020 that differed in their relative viral loads in patient upper airways. These data suggest that differences in virus genotype can impact viral load and may influence viral spread. FUNDING: Dixon Family Translational Research Award, Northwestern University Clinical and Translational Sciences Institute (NUCATS), National Institute of Allergy and Infectious Diseases (NIAID), Lurie Comprehensive Cancer Center, Northwestern University Emerging and Re-emerging Pathogens Program.


Subject(s)
COVID-19/genetics , Genome, Viral , Genotype , Phylogeny , SARS-CoV-2/genetics , Viral Load , Female , Humans , Male , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL